Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise.
نویسندگان
چکیده
Recently, fMRI was introduced in a well-documented animal model for vocal learning, the songbird. Using fMRI and conspecific signals mixed with different levels of broadband noise, we now demonstrate auditory-induced activation representing discriminatory properties of auditory forebrain regions in anesthetized male zebra finches (Taeniopygia guttata). Earlier behavioral tests showed comparable calling responses to the original conspecific song stimulus heard outside and inside the magnet. A significant fMRI response was elicited by conspecific song in the primary auditory thalamo-recipient subfield L2a; in neighboring subareas L2b, L3, and L; and in the rostral part of the higher-order auditory area NCM (caudomedial nidopallium). Temporal BOLD response clustering revealed rostral and caudal clusters that we defined as "cluster Field L" and "cluster NCM", respectively. However, because the actual border between caudal Field L subregions and NCM cannot be seen in the structural MR image and is not precisely reported elsewhere, the cluster NCM might also contain subregion L and the medial extremes of the subregions L2b and L3. Our results show that whereas in cluster Field L the response was not reduced by added noise, in cluster NCM the response was reduced and finally disappeared with increasing levels of noise added to the song stimulus. The activation in cluster NCM was significant for only two experimental stimuli that showed significantly more behavioral responses than the more degraded stimuli, suggesting that the first area within the auditory system where the ability to discern song from masking noise emerges is located in cluster NCM.
منابع مشابه
Song Processing in the Zebra Finch Auditory Forebrain Reflects Asymmetric Sensitivity to Temporal and Spectral Structure
Despite being commonly referenced throughout neuroscientific research on songbirds, reports of hemispheric specialization in the processing of song remain controversial. The notion of such asymmetries in songbirds is further complicated by evidence that both cerebral hemispheres in humans may be specialized for different aspects of speech perception. Some studies suggest that the auditory neura...
متن کاملThe hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch.
The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons th...
متن کاملAltered Auditory BOLD Response to Conspecific Birdsong in Zebra Finches with Stuttered Syllables
How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to ...
متن کاملFunctional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity
BACKGROUND Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferenti...
متن کاملDifferential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch.
The brains of adult zebra finches (Taeniopygia guttata) are tuned to the songs of conspecifics. In adult males, the caudomedial neostriatum (NCM) responds to zebra finch song, and in adult females the NCM and hippocampus (HP) are active following exposure to zebra finch song more than other auditory stimuli. The caudal hyperstriatum ventrale (cHV) in both sexes also responds to song, but in fem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 2 شماره
صفحات -
تاریخ انتشار 2008